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An interactive approach is set forth for calculating ship boundary 
layers and wakes for nonzero Froude number. The Reynolds-averaged 
Navier-Stokes equations are solved using a small domain with edge 
Conditions matched with those from a source-doublet Dawson method 
solved using the displacement body. An overview is given of both the 
viscous- and inviscid-flow methods, including their treatments of the 
free-surface boundary conditions and interaction procedures. Results 
are presented for the Wigley hull, including comparisons for zero 
and nonzero Froude number and with available experimental data 
and the inviscid-flow results, which validate the overall approach and 
enable an evaluation of the wave-boundary layer and wake interaction. 
ID 1992 Academic Press, Inc 

INTRODUCTION 

The interaction between the wavemaking of a ship and 
its boundary layer and wake is a classic and important 
problem in ship hydrodynamics. Initially, the interest was 
primarily with viscous effects on wave resistance and pro- 
pulsive performance due to the lack of Reynolds number 
(Re) similarity in model tests. More recently, also of interest 
are the wave-boundary layer and wake interaction effects on 
the details of ship wakes and wave patterns due to the 
advent of satellite remote sensing. The present study is 
central to the aforementioned problems; i.e., it concerns the 
development of an interactive approach for calculating ship 
boundary layers and wakes for nonzero Froude number 
(Fr). Thus, both the effects of wavemaking on the boundary 
layer and wake and, vice versa, the effects of the boundary 
layer and wake on wavemaking are included in the theory, 
although the focus here is somewhat more on the former. 

Historically, inviscid-flow methods have been used to cal- 
culate wavemaking and viscous-flow methods the boundary 
layer and wake, in both cases, without accounting for the 

interaction. Recent work on wavemaking has focused on the 
solution of the so-called Neumann-Kelvin problem using 
both Rankine- and Havelock-source approaches. Method 
implementing these approaches were recently competitively 
evaluated and ranked by comparing their results with 
towing-tank experimental data [ 11. In general, the methods 
underpredicted the amplitude of the divergent bow waves, 
were lacking in high wave-number detail in the vicinity of 
the bow-wave cusp line, and overpredicted the amplitudes 
of the waves close to the stern. These difficulties were 
primarily attributed to nonlinear and viscous effects. The 
methods using the Havelock-source approach generally 
outperformed those using the Rankine-source approach, 
except with regard to the near-field results (i.e., within 
one beam length of the model) for which one of the latter 
methods [2] was found to be far superior. 

Considerable effort has been put forth in the development 
of viscous-flow methods for ship boundary layers and 
wakes. Initially, three-dimensional integral and differential 
boundary-layer equation methods were developed; how- 
ever, these were found to be inapplicable near the stern 
and in the wake. More recently, efforts have been directed 
towards the development of Navier-Stokes (NS) and 
Reynolds-averaged NavierrStokes (RANS) equation 
methods; hereafter both of these will simply be referred 
to as RANS equation methods. At present, the status of 
these methods is such that practical ship geometries can be 
considered, including complexities such as appendages and 
propellers. Comparisons with experimental data indicate 
that many features of the flow are adequately simulated; 
however, turbulence modeling and grid generation appear 
to be pacesetting issues with regard to future developments 
(see, e.g., the review by Pate1 [3] and the Proceedings of 
the 5th International Conference on Numerical Ship Hydro- 
dynamics [4] ). 
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Relatively little work has been done on the interaction 
between wavemaking and boundary layer and wake. Most 
studies have focused separately on either the effects of 
viscosity on wavemaking or the effects of wavemaking 
(i.e., waves) on the boundary layer and wake. Professor 
Landweber and his students have both demonstrated 
experimentally the dependence of wave resistance on 
viscosity and shown computationally that by including the 
effects of viscosity in inviscid-flow calculations of wave 
resistance better agreement with experimental data is 
obtained (most recently, [5]). Such effects have been 
confirmed by others, including other more detailed aspects 
of the flow field such as surface-pressure distributions and 
wave profiles and patterns [6]. 

Most studies concerning the effects of waves on boundary 
layer and wake have been of an approximate nature, 
utilizing integral methods and assuming small crossflow 
conditions (see Stern [7] for a more complete review, 
including references). In [7, 81, experiment and theory are 
combined to study the fundamental aspects of the problem 
utilizing a unique, simple model and computational 
geometry, which enabled the isolation and identification of 
certain important features of the wave-induced effects. In 
particular, the variations of the wave-induced piezometric- 
pressure gradients are shown to cause acceleration and 
deceleration phases of the streamwise velocity component 
and alternating direction of the crossflow, which results in 
large oscillations of the displacement thickness and wall- 
shear stress as compared to the no-wave condition. For the 
relatively simple geometry studied, first-order boundary- 
layer calculations with a symmetry-condition approxima- 
tion for the free-surface boundary conditions were shown to 
be satisfactory; however, extensions of the computational 
approach for practical geometries were not successful [9]. 

Miyata et al. [lo] and Hino [ 111 have pursued a com- 
prehensive approach to the present problem in which the 
NS equations (sub-grid scale and Reynolds averaged, 
respectively) are solved using a large domain with approx- 
imate free-surface boundary conditions. In both cases, the 
basic algorithms closely follow those of MAC [12] and 
SUMMAC [13]. However, [lo] uses a time-dependent 
free-surface conforming grid, whereas [ 111 uses a fixed grid 
which does not conform to the free surface. The results from 
both approaches are promising, but, thus far, have had 
difficulties in accurately resolving the boundary-layer and 
wake regions and, in the case of [lo], have been limited to 
low Re. 

The present interactive approach is also comprehensive. 
Two of the leading inviscid- [2] and viscous-flow [14] 
methods are modified and extended for interactive calcula- 
tions for ship boundary layers and wakes for nonzero Fr. 
The interaction procedures are based on extensions of those 
developed by one of the authors for zero Fr [ 151. The work 
of [7, 8, 151 is precursory to the present study. Also, it 

should be mentioned that the present study is part of a large 
project concerning free-surface effects on boundary layers 
and wakes. Some of the related studies under this project 
will be referenced later. 

In the following, an overview is given of both the viscous- 
and inviscid-flow methods, with particular emphasis on 
their treatments of the free-surface boundary conditions and 
the interaction procedures. Results are presented for the 
Wigley hull, including comparisons for zero and nonzero Fr 
and with available experimental data and inviscid-flow 
results, which validate the overall approach and enable an 
evaluation of the wave-boundary layer and wake inter- 
action. In the presentation of the computational methods 
and results and discussions to follow, variables are either 
defined in the text or in the Appendix and are nondimen- 
sionalized using the ship length L, freestream velocity U,,, 
and fluid density p. 

COMPUTATIONAL METHODS 

Consider the flow past a ship-like body, moving steadily 
at velocity U,, and intersecting the free surface of an incom- 
pressible viscous fluid. As depicted in Fig. 1, the flow field 
can be divided into four regions in each of which different or 
no approximations can be made to the governing RANS 
equations: region 1 is the inviscid flow; region 2 is the bow 
flow; region 3 is the thin boundary layer; and region 4 is 
the thick boundary layer and wake. The resulting equations 
for regions 1 and 3 and their interaction (or lack of one) 
are well known. Relatively little is .known about region 2. 
Recent experiments concerning scale effects on near-field 
wave patterns have indicated a Re dependency for the 
bow wave both in amplitude and divergence angle [16]; 
however, this aspect of the problem is deferred for later 
study. Herein, we are primarily concerned with the flow in 
region 4 and its interaction with that in region 1. As 
discussed earlier, the description of the flow in region 4 
requires the solution of the complete RANS equations (or, 
in the absence of flow reversal, the so-called partially 
parabolic RANS equations, however, this simplification will 
not be considered here). 

There are two possible approaches to the solution of the 
RANS equations: a global approach, in which one set of 
governing equations appropriate for both the inviscid- 
and viscous-flow regions are solved using a large solution 
domain so as to capture the viscous-inviscid interaction; 
and an interactive approach, in which different sets of 
governing equations are used for each region and the com- 
plete solution obtained through the use of an interaction 
law, i.e., patching or matching conditions. Both approaches 
are depicted in Fig. 1. The former approach is somewhat 
more rigorous because it does not rely on the patching con- 
ditions that usually involve approximations. Nonetheless, 
for a variety of reasons, both types of approaches are of 
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FIG. 1. Definition sketch of flow-field regions and solution domains: (a) (x, y) plane; (b) (y, z) plane. 

interest. In [ 151, both approaches were evaluated for zero solution for the present problem is also of interest and a 
Fr by comparing interactive and large-domain solutions for comparative evaluation as was done previously for zero Fr 
axisymmetric and simple three-dimensional bodies using is planned for study under the present project for nonzero 
the same numerical techniques and algorithms and turbu- Fr. 
lence model. It is shown that both approaches yield satis- 
factory results, although the interaction solutions appear to 
be computationally more efficient. As mentioned earlier, the 

Viscous-&viscid Interaction 

present-study utilizes the interactive approach. This takes Referring to Fig. 1, there are two primary differences 
advantage of the latest developments in both the inviscid- between the interactive and large-domain approaches with 
and viscous-flow technologies; however, a large-domain regard to the solution of the RANS equations: (1) the size 



of the solution domain, i.e., the placement of the outer Equations and Coordinate System 
boundary S,; and (2) the boundary (i.e., edge) conditions 
specified thereon. For the large-domain solution, uniform- The RANS equations are written in the physical domain 

flow and wave-radiation conditions are appropriate, where- using cylindrical coordinates (x, r, 0) as 

as the interaction solution requires the specification of the 
match boundary (i.e., S,), as well as an interaction law, and 
also a method for calculating the inviscid flow. 

In the present study, solutions were obtained with the 
match boundary at about 26, where 6 is the boundary layer DU 
and wake thickness. The interaction law is based on the Dt 

- --&B+uu)-+gj(G) 

concept of displacement thickness 6 *. A three-dimensional - 
S* for a thick boundary layer and wake can be defined 
unambiguously by the two requirements that it be a stream 
surface of the inviscid flow continued from outside the 
boundary layer and wake and that the inviscid-flow dis- DV W2 

charge between this surface and any stream surface exterior Dt r 
= -$E)-;(d+B) 

to the boundary layer and wake be equal to the actual 
discharge between the body and wake centerplane and 
the latter stream surface. A method for implementing 
this definition for practical geometries is presently under 
development [ 171; however, in lieu of this, an approximate 
definition is used in which two-dimensional definitions for 
S*, i.e., DW VW 

s*=s,“(1-#)dr (1) 
P 

for the keelplane and waterplane at each station are con- 
nected by a second-order polynomial. 

In summary, the inviscid-flow solution is obtained for the 
displacement body 6*. This solution then provides the 
boundary conditions for the viscous-flow solution, i.e., 

and 

W(S,) = Wp(S,) = WC, (2) 

P(SJ = P,(So) = Pe. 

Closure of the RANS equations is attained through the 
Because 6* and V,(S,) are not known a priori, an initial use of the standard k -a turbulence model without modi- 
guess must be provided and the complete solution obtained fications for free-surface effects. The limited experimental 
by iteratively updating the viscous- and inviscid-flow solu- data available for surface-piercing bodies [ 1 S] indicate 
tions until the patching conditions (1) and (2) are satisfied. that, near a free surface, the normal component of turbu- 

lence is damped and the longitudinal and transverse com- 

Viscous Flow 
ponents are increased. This effect has also been observed in 
open-channel flow [19] and in recent measurements for 

The viscous flow is calculated using the large-domain free-surface effects on the wake of a submerged flat plate 
method of Pate1 et al. [ 143 modified and extended for inter- [20] and a plane jet [21]. Such a turbulence structure can- 
active calculations and to include free-surface boundary not, in fact, be simulated with an isotropic eddy viscosity 
conditions. The details of the basic method are provided turbulence model like the present one; however, this aspect 
by [14]. Herein, an overview is given as an aid in under- of the problem is also deferred for later study. 
standing the present modifications and extensions. In the standard k - E turbulence model, each Reynolds 
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stress is related to the corresponding mean rate of strain by 
the isotropic eddy viscosity v, as 

-G=v 

(7) 

-,=v,(f~+2~-;k; 

v, is defined in terms of the turbulent kinetic energy k and 
its rate of dissipation E by 

k2 
v, = c, -) (8) & 

where C, is a model constant and k and E are governed by 
the modeled transport equations 

(9) 

(10) 

G is the turbulence generation term, 

G=~t{2[(f!)‘+(f!)~+(;g+g~] 

(11) 

The effective Re R, is defined as 

1 -=l,!i 
R, Re Us (12) 

in which 4 = k for the k-equation (9) and 4 = E for the 
s-equation (10). The model constants are: C, =0.09, 
C,,=1.44, CE2=1.92,a.=a,=o,=ak=1,a,,=1.3. 

The governing equations (3) through (12) are trans- 
formed into nonorthogonal curvilinear coordinates such 
that the computational domain forms a simple rectangular 
parallelepiped with equal grid spacing. The transformation 
is a partial one since it involves the coordinates only and 
not the velocity components (U, V, W). The transformation 
is accomplished through use of the expression for the 
divergence and “chain-rule” definitions of the gradient and 
Laplacian operators which relate the orthogonal curvilinear 
coordinates xi = (x, r, 0) to the nonorthogonal curvilinear 
coordinates c’ = ([, q, [). In this manner, the governing 
equations (3) through (12) can be rewritten in the form of 
the continuity and convective-transport equations 

g 
11 a24 22 a24 

di;z+g q+g 

33 a24 
agZ 

=~A,~+ZB,~+~C~~+R,~+S,. (14) 

Discretization and Velocity-Pressure Coupling 

The convective-transport equations (14) are reduced to 
algebraic form through the use of a revised and simplified 
version of the finite-analytic method. In this method, 
Eqs. (14) are linearized in each local rectangular numerical 
element, dr = dy = A[ = 1, by evaluating the coefficients 
and source functions at the interior node P and transformed 
again into a normalized form by a simple coordinate 
stretching. An analytic solution is derived by decomposing 
the normalized equation into one- and two-dimensional 
partial differential equations. The solution to the former 
is readily obtained. The solution to the latter is obtained 
by the method of separation of variables with specified 
boundary functions. As a result, a 12-point finite-analytic 
formula for unsteady, three-dimensional, elliptic equations 
is obtained in the form 

dP= 
1 

1+ C,CCu + CD + (R/r)1 
(15) 

x &&p,,+cp 
i 

c”Q”+c,d,,++ l-s . 
I ( >I 

It is seen that 4P depends on all eight neighboring nodal 
values in the crossplane as well as the values at the upstream 
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and downstream nodes 4” and do, and the values at the 
previous time step b”,- ‘. For large values of the cell Re, 
Eq. (15) reduces to the partially parabolic formulation 
which was used previously in other applications. Since 
Eq. (15) are implicit, both in space and time, at the current 
crossplane of calculation, their assembly for all elements 
results in a set of simultaneous algebraic equations. If the 
pressure field is known, these equations can be solved by 
the method of lines. However, since the pressure field is 
unknown, it must be determined such that the continuity 
equation is also satisfied. 

The coupling of the velocity and pressure fields is accom- 
plished through the use of a two-step iterative procedure 
involving the continuity equation based on the SIMPLER 
algorithm. In the first step, the solution to the momentum 
equations for a guessed pressure field is corrected at each 
crossplane such that continuity is satisfied. However, in 
general, the corrected velocities are no longer a consistent 
solution to the momentum equations for the guessed @. 
Thus, the pressure field must also be corrected. In the 
second step, the pressure field is updated again through the 
use of the continuity equation. This is done after a complete 
solution to the velocity field has been obtained for all 
crossplanes. Repeated global iterations are thus required 
in order to obtain a converged solution. The procedure is 
facilitated through the use of a staggered grid. Both the 
pressure-correction and pressure equations are derived in 
a similar manner by substituting Eq. (1.5) for (U, V, IV) 
into the discretized form of the continuity equation (13) 
and representing the pressure-gradient terms by finite 
differences. 

Solution Domain and Boundary Conditions 

The solution domain is shown in Fig. 1. In terms of the 
notation of Fig. 1, the boundary conditions on each of the 
boundaries are as follows: On the inlet plane S;, the initial 
conditions for 4 are specified from simple flat-plate and the 
inviscid-flow solutions. On the body surface S,, a two-point 
wall-function approach is used. On the symmetry plane Sk, 
the conditions imposed are a( U, V, $, k, &)/ad = W = 0. 
On the exit plane S,, axial diffusion is negligible so that the 
exit conditions used are a2#ax2 = 0, and a zero-gradient 
condition is used for b. On the outer boundary S,, the edge 
conditions are specified according to (2), i.e., (U, W, 3) = 
(U,, W,, $,) and a(k, E)/&=O, where (U,, W,, pp) are 
obtained from the inviscid-flow solution evaluated at the 
match boundary S,. 

On the free-surface S, (or simply q), there are two 
boundary conditions, i.e., 

V.n=O (16) 

and 

ziinj = T$n,, (17) 

where n is the unit normal vector to the free surface 
and rii and r$ are the fluid- and external-stress tensors, 
respectively, the latter, for convenience, including surface 
tension. The kinematic boundary condition expresses the 
requirement that q is a stream surface and the dynamic 
boundary condition that the normal and tangential stresses 
are continuous across it. Note that q itself is unknown 
and must be determined as part of the solution. In addi- 
tion, boundary conditions are required for the turbulence 
parameters, k and E; however, at present, these are not 
well established. 

In the present study, the following approximations were 
made in employing (16) and (17): (a) the external stress and 
surface tension were neglected; (b) the normal viscous stress 
and both the normal and tangential Reynolds stresses were 
neglected; (c) the curvature of the free surface was assumed 
small and the tangential gradients of the normal velocity 
components were neglected in the tangential stresses; and 
(d) the wave elevation was assumed small such that both 
(16) and (17) were represented by first-order Taylor series 
expansions about the mean wave-elevation surface (i.e., the 
waterplane S,.). Subject to these approximations, (16) and 
(17) reduce to 

P(S,)=ri/Fr2-v~ , (19) 
& 

(20) 

where Cartesian coordinates (x, y, z) have been used in ( 18) 
and (19). Conditions (18) through (20) were implemented 
numerically as follows: The kinematic condition (18) was 
used to solve for the unknown free-surface elevation q by 
expressing the derivatives in finite-difference form and r) in 
terms of its difference from an assumed (or previous) value. 
A backward difference was used for the x-derivative, a 
central difference for the y-derivative, and the inviscid-flow 
qp was used as an initial guess. The dynamic conditions, (19) 
and (20), were used in conjunction with the solution for q in 
solving the pressure and momentum and turbulence model 
equations, respectively. Backward differences were used for 
the z- and e-derivatives. 

Inviscid Flow 

The inviscid flow is calculated using the method of Rosen 
[2], i.e., the SPLASH computer code. The method is an 
extended version of the basic panel method of Maskew 
[ 22, 231 originally developed for the prediction of subsonic 
aerodynamic flows about arbitrary configurations, modified 
to include the presence of a free surface and gravity waves 
both for submerged and surface-piercing bodies. As is the 
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case with the basic method, lifting surfaces and their 
associated wake treatments as well as wall boundaries are 
included; however, the present overview and calculations 
are for nonlifting unbounded flow (see [24] for SPLASH 
results for lifting flow). The details of the basic method are 
provided by [22, 231. Herein, an overview is given as an aid 
in understanding the extensions for the inclusion of the free 
surface and gravity waves and the present interaction 
calculations. 

The flow is assumed irrotational such that the governing 
differential equation is the Laplace equation 

V’(b = 0, (21) 

where 4 is the external perturbation velocity potential; i.e., 

v, = u,x + vqi (22) 

A solution for 4 may be obtained by defining also an inter- 
nal perturbation potential #i and applying Green’s theorem 
to both the inner and outer regions and combining the 
resulting expressions to obtain 

where R,, is the distance from the surface point Q to the 
field point P and p=&--$ and o=8($-&)/8n, are 
the dipole and source strengths, respectively. In [22], the 
nature of solutions to (23) is investigated for two different 
specifications for $,, i.e., c$, = 0 and U,x. In both cases, (23) 
is solved for the surface potential (i.e., #(S,)) by represent- 
ing the body by flat quadrilateral panels over which p and 
(T are assumed constant and utilizing the farlield 4 --+ 0 and 
body ad/&t = - Uonx boundary conditions. The zero inter- 
nal perturbation potential formulation (4, = 0) is shown to 
produce “results of comparable accuracy to those from 
higher-order methods for the same density of control 
points.” In this case, the velocity normal to the external 
surface V, is 

V,, = U,n, + afyan = U,,n, + c (24) 

and, the velocity tangent to the external surface V, is 

v, = u, t., + ad/at = u, t ~ - appt, (25) 

where t, is the x-component of a tangent vector and t is 
arclength in a tangential direction. For solid surfaces, V,, is 
usually zero, but it may be a specified nonzero value to 
simulate body motion, boundary-layer growth, inflow and 
outflow, control-surface deflection, etc. Hence, in the basic 
method, (24) is used to evaluate the source strengths 

directly. The corresponding doublet strengths are then 
given by solution of the discretized form of (23). Values of 
V, are subsequently computed using (25) with a central 
difference for the t-derivative. It should be recognized that 
the so-called zero internal perturbation formulation is, in 
fact, equivalent to methods based on Green’s third formula 
applied directly to the external perturbation potential (e.g., 
~251). 

In the SPLASH code, the internal zero-peturbation 
boundary condition is satisfied not only inside the sub- 
merged portion of the configuration, but also on the “other 
side” of a finite portion of the free surface. Both are 
represented by source-doublet singularity panels and flow 
leakage from one side of the free-surface to the other, at 
the free-surface outer boundary, is assumed to be negligible. 
This assumption is valid if the outer boundary of the free 
surface is sufficiently far from the configuration, and if 
the wave disturbances are eliminated before reaching the 
free-surface outer boundary. In this case, the discretized 
form of (23) is 

q5,= 1 /Iii/ii+ 1 B,o,=O. (26) 
.%7+si Sh + s, 

The free-surface shape is determined by representing the 
undisturbed free surface by panels, whereupon free-surface 
boundary conditions linearized with respect to zero Fr are 
imposed [26]. The zero Fr velocities, U,, V,, and W,, , 
are obtained by first considering all free-surface panels as 
solid and fixed (in contrast to a traditional approach which 
employs the double panel or image model). The nonzero Fr 
velocities are then expressed as small increments to those for 
zero Fr. The velocities tangent and normal to a free-surface 
panel are, respectively, 

and 

U .=U<,+AU, V,,z V,,+AV, (27) 

V,,= W;z W,+AWzAW, (28) 

since W, = 0 for a free-surface panel. Through Bernoulli’s 
equation, the pressure on free-surface panels is a function 
of local velocity and is approximated by retaining only first- 
order incremental velocity terms 

Q=;{l-(u2,+v;+ WZ,} 

zi{l-(U;+V;)}-(U,AU+V,jAVj 

+{l-(u;+V;)} 

- iuo(u.Y-uo)+ V,(v,.- v,,>. (29) 

Free-surface boundary conditions are linearized in a 
similar manner, retaining only first-order incremental 
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velocity and surface-elevation terms. The kinematic free- 
surface boundary condition (18) is approximated by 

w== V,E U0vl.Y + VOrl,” = wi + vY2 v.,o> (30) 

where the subscript s, denotes differentiation along a zero 
Fr streamline. The dynamic free-surface boundary condi- 
tion ( 19), after differentiation along s,, and substituting for 
qsO from (30), becomes 

2 mI VP, 
as<, - Fr2 (Uf, + Vz)“” (31) 

A live-point backward difference is used in the 5 and rl direc- 
tions and the free-surface grid metrics are used to compute 
the pressure gradient 

ati 
&!!+fr” 

(1 ax 0 ay -ET 
as, (U;: + vy2 

_ ( 
u aa at I ab all ab at I aa all + v 

0 ag ax aYI ax > ( 0 at ay at7 ay 
(ui+ v,Tp2 

) 
(32) 

The pressure-gradient algorithm is structured to permit 
the use of any blocked free-surface grid arrangement. Also, 
using less than a five-point backward difference tends to 
dampen wave amplitudes. This wave-damping mechanism 
is employed on panels near the outer boundary of the finite 
free-surface model, so that wave disturbances are eliminated 
before reaching the free-surface outer boundary. 

At this point, a sufficient number of linear dependencies 
have been established to permit the elimination of the 
unknown free-surface source strengths in (26), i.e., (24) 
relates source strength to panel normal velocity, (3 1) relates 
free-surface panel normal velocity to streamwise pressure 
gradient, (32) with backward differences relates streamwise 
pressure gradient to free-surface pressures, (29) relates free- 
surface pressure to free-surface panel tangential velocities, 
(25) relates panel tangential velocities to the local surface 
gradient of doublet strength, and central differences relate 
the local surface gradient of doublet strength to 
strenghts. Hence, free-surface source strengths 
expressed as a linear combination of free-surface 
strengths, i.e., 

doublet 
can be 
doublet 

(33) 

Substituting for oj from (33) into (26) yields 

di= 1 Ag/Lj+C B;jOj+C B<j aj+Cbjkpk . (34) 
.%+sn s/2 & SW > 

With free-surface source strengths eliminated and source 
strengths on the solid body evaluated directly, solution of 
(34) yields the corresponding doublet strengths. The free- 
surface source strengths are then given by (33), and (24) 
and (25) are used to compute the resulting velocities on 
both body and free-surface panels. Pressures on free-surface 
panels are given by (29). A similar linearized formula is 
used for pressures acting on body panels, and configura- 
tion forces and moments are obtained by panel pressure 
integration. 

For interactive calculations, the SPLASH code calculates 
the inviscid free-surface flow about the equivalent displace- 
ment body resulting from the previous viscous calculation. 
For this purpose, the equivalent displacement body is 
treated as a solid fixed surface. The inviscid flow velocities 
required for the next viscous flow calculation, at off-body 
points on the viscous grid outer boundary S,, are obtained 
using the computed source-doublet solution and velocity 
influence coefficients. A sub-panel velocity influence-coef- 
ficient algorithm was developed which utilizes a bilinear 
variation of source and doublet strength across each panel. 
The continuous variation of source and doublet strength on 
each panel, and across panel edges, enhances the accuracy 
of off-body velocity calculations at points close to any body 
and/or free-surface panels. 

WIGLEY HULL GEOMETRY AND 
EXPERIMENTAL INFORMATION 

The Wigley parabolic hull was selected for the initial 
calculations since the geometry is relatively simple and 
it has been used in many previous computational and 
experimental studies. In particular, it is one of the two’hulls, 
the other being the Series 60 C, = 0.6 ship model, selected 
by the Cooperative Experimental Program (CEP) of the 
Resistance and Flow Committee of the International 
Towing Tank Conference [27] for which extensive global 
(total, wave pattern, and viscous resistance, mean sinkage 
and trim, and wave profiles on the hull) and local (hull 
pressure and wall shear-stress distributions and velocity and 
turbulence fields) measurements were reported. It was for 
these same reasons that the Wigley hull was selected as 
the first test case of the basic viscous-flow method [14], 
including comparisons with some of the zero Fr data of the 
CEP. Herein, comparisons are made for zero Fr with this 
same data and for nonzero Fr with the appropriate data of 
the CEP. As will be shown later, the nonzero Fr data is not 
as complete or of the same quality as that for zero Fr, 
which was the motivation for a related experimental study 
for the Series 60 CB= 0.6 ship model [28] for which 
calculations and comparisons are in progress. However, the 
comparisons are still useful in order to validate the present 
interactive approach and display the shortcomings of both 
the computations and experiments. 
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FIG. 2. Computational grid: (a) longitudinal plane; (b) body and 
wake crossplanes. 

The coordinates of the Wigley hull are given by 

-p; {4x(1 -x)}{l -(z/d)2}, (35) 

where B = 0.1 and d = 0.0625. Waterplane and typical 
crossplane views are shown in Fig. 2. 

RESULTS 

In the following, first, the computational grids (Figs. 2 
and 3) and conditions are described. Then, some example 
results are presented and discussed for zero Fr, followed by 
those for nonzero Fr, including, wherever possible, com- 
parisons with available experimental data, and, in the latter 
case, with inviscid-flow results. The convergence history of 
the pressure is shown in Fig. 4. Figure 5 provides a com- 
parison of the large-domain and interactive solutions. The 
free-surface perspective view and contours, wave profile, 
and surface-pressure profiles and contours are shown in 
Fig. 6 through 10, respectively. The axial-velocity contours, 
crossplane-velocity vectors, and pressure, axial-vorticity, 
and turbulent kinetic energy contours for several repre- 
sentative stations are shown in Figs. 11 through 13. Lastly, 
the velocity, pressure, and turbulent kinetic energy profiles 
for similar stations are shown in Figs. 14 through 16. On the 
figures and in the discussions, the terminology “interactive” 
refers to results from both the interactive viscous and dis- 

placement-body inviscid solutions. When the distinction is 
not obvious it will be made. The terminology “inviscid” or 
“bare-body” refers to the noninteractive inviscid solution. 

Computational Grids and Conditions 

The viscous-flow computational grid was obtained using 
the technique of generating body-fitted coordinates through 
the solution of elliptic partial differential equations. Because 
of the simplicity of the present geometry, it is possible to 
specify the axialf’ and circumferentialf3 control functions 
as, respectively, only functions of 4 and [; however, in order 
to accurately satisfy the body-surface boundary condition 
and resolve the viscous flow, f 2 = f’( 5, q, <). Partial views 
of the grids used in the calculations are shown in Figs. 2a, b 
for a longitudinal plane and typical body and wake 
crossplanes, respectively. Initially, a large-domain grid was 
generated. Subsequently, a small-domain grid was obtained 
by simply deleting that portion of the large-domain grid 
that lay beyond about Y > 0.2. The outer boundary for the 
small-domain grid is shown by the dashed line in Fig. 2. For 
the large-domain grid, the inlet, exit, and outer boundaries 
are located at x = (0.296,4.524) and Y = 1, respectively. The 
first grid point off the body surface is located in the range 
90 < y+ < 250. Fifty axial, 30 radial, and 15 circumferential 
grid points were used. As already indicated, the small- 
domain grid was similar, except 21 radial grid points were 
used. In summary, the total number of grid points for the 
large- and small-domain calculations are 22,500 and 15,150, 
respectively. 

The inviscid-flow displacement-body and free-surface 
panelization is shown in Fig. 3. Four hundred twenty three 
panels are distributed over the displacement body and 546 
over the free surface for a total number of 969 panels. The 
panelization covers an area corresponding to l-ship length 
upstream of the bow, 1.5-ship lengths in the transverse 
direction, and 3-ship lengths downstream of the stern. 
This panel arrangement was judged optimum based on 
panelization dependency tests [ 161. 

FIG. 3. Displacement bodies: (a) Fr = 0; (b) Fr = 0.316. 
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The conditions for the calculations are as follows: L = 1; 
U,= 1; Re=4.5 x 106; Fr =0 and 0.316; and on the inlet 
plane the average values for 6 and U, are 0.0033 and 0.0455, 
respectively. These conditions were selected to correspond 
as closely as possible to those of the experiments of the CEP 
with which comparisons will be made [S, 29, 301. 

Initially, large-domain calculations were performed for 
zero Fr. A zero-pressure initial condition was used and the 
values for the time CI~, pressure c(~, and transport quantity tr( 
(where 4 = k and E) underrelaxation factors and total 
number of global iterations were 0.05 and 200, respec- 
tively. Next, small-domain calculations were performed, 
first for zero Fr, and then for nonzero Fr. For zero Fr, the 
interaction calculations were started with a zero-pressure 
initial condition and free-stream edge conditions (U, = 1, 
W, = pr = 0). After 200 global iterations, the edge condi- 
tions were updated using the latest values of displacement 
thickness. Subsequently, the edge conditions were updated 
every 200 global iterations until convergence was achieved, 
which took three updates. For nonzero Fr, the calculations 
were started with the zero Fr solution as the initial condi- 
tion and with nonzero Fr edge conditions obtained utilizing 
the zero Fr displacement body. This solution converged in 
200 global iterations. Most of the results to be presented are 
for this case; however, some limited results will be shown in 
which the nonzero Fr edge conditions were obtained using 
an updated nonzero Fr displacement body. The values for 
c(,, a,,, and CI~ (where 4 = k and E) used for the small-domain 
calculations were the same as those for the large-domain 
calculations; however, for nonzero Fr, in addition, a value 
of 0.01 was used for ad (where 4 = V) for grid nodes near the 
outer boundary. The ajj/az term in (19) was found to have 
a small influence and was neglected in many of the calcula- 
tions; however, this may be due, in part, to the present grid 
resolution. The calculations were performed on the Naval 
Research Laboratory CRAY XMP-24 supercomputer. The 

-- Fr=O 
- Fr=0.316 

Global Iteration Number 

FIG. 4. Convergence history. 

CPU time required for the calculations was about 17 min 
for 200 global iterations for the viscous-flow code and 1 min 
for the inviscid-flow code. 

Extensive grid dependency and convergence checks were 
not carried out since these had been done previously both 
for the basic viscous-flow method [14] and for other 
applications. However, some calculations were performed 
using both coarser and liner grids. These converged, respec- 
tively, more rapidly and slower than the present solution. 
Qualitatively the solutions were very similar to the present 
one, but with reduced and somewhat increased resolution, 
respectively. The convergence criterion was that the change 
in solution be less than about 0.05 % for all variables. 
Usually the solutions were carried out at least 50 global 
iterations beyond meeting this criterion. Figure 4 provides 
the convergence history for the pressure and is typical of the 
results for all the variables. In Fig. 4, the abscissa is the 
global iteration number it and the ordinate is the residual 
R(it), which is defined as 

mlax imax 

R(d) = c lp(i, it- l)- p(i, it)1 c Ip(i, itl)l, 
I=1 1 

(36) 
i= 1 

where i, itl, and imax are the grid-point index and total 
number of iterations, and grid points, respectively. 
Referring to Fig. 4, global iterations l-200 correspond 
to the final iterations of the zero Fr solution and global 
iterations 20&400 to those for the nonzero Fr solution. 

Zero Fr 

Figure 5 provides a comparison of the zero Fr large- 
domain and interactive solutions and experimental data. 
The two solutions are nearly identical and show good agree- 
ment with the data, which validates the present interactive 
approach. The agreement with the data for the large- 
domain case is, of course, not surprising since this was 
already established in [ 141 for a similar grid and condi- 
tions, i.e., the present zero Fr solution is essentially the 
same as that of [ 143. Some additional aspects of the zero Fr 
solution are displayed in Figs. 11 through 16 for later 
comparison with the nonzero Fr solution. Reference [14] 
provides detailed discussion of the zero Fr solution, in- 
cluding comparisons with the available experimental data. 
In summary, there is a downward flow on the forebody and 
an upward flow on the afterbody in response to the external- 
flow pressure gradients. The boundary layer and wake 
remain thin and attached and the viscous-inviscid inter- 
action is weak; however, on the forebody, the boundary 
layer is relatively thicker near the keel than the waterplane, 
whereas the reverse holds true on the afterbody and in the 
near wake. The stern vortex is very weak. In the inter- 
mediate and far wake, the flow becomes axisymmetric. 
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for the nonzero Fr case, and the third can be explained by 
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the wave-induced pressure gradients. On the keel, all three 
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of these quantities are nearly the same as for zero Fr. 

The free-surface perspective views (Fig. 6) and contours 
2 
d I 

(Fig. 7) vividly display the complex wave pattern consisting 
of both diverging and transverse wave systems. The bow 
and stern wave systems are seen to initiate with crests and 
the shoulder systems initiate with troughs, which conforms 
to the usual pattern described for this type of hull form. Very 
apparent is the reduced amplitude of the stern waves for the 
interactive as compared to the inviscid solution. Also, the 
diverging wave system is more pronounced and at a smaller 
angle with respect to the centerplane. Note that the axial 

,1 , , / 1 and transverse wave-induced pressure gradients can be 
discerned from these figures, but with an appropriate 
phase shift, i.e., increasing and decreasing wave elevations 

6.4 0.5 0.6 0.7 0.8 0.9 1.0 imply, respectively, adverse and favorable gradients. The 
X wave profile along the hull is shown in Fig. 8, which, in this 

case, includes experimental data for comparison. On the 
forebody, the two solutions are nearly identical and under- 

C 
- Fr=O.316 
-- Fr=O:Interactlve 

predict the amplitude of the bow-wave crest and the first 
0 EY=O:Large-Doman 
0 Exp.-Sarda 

trough. On the afterbody, the interactive solution indicates 
larger values than the inviscid solution, with the data in 
between the two. The wave profile for the nonzero Fr 
displacement body (Fig. 3b) is also shown in Fig. 8. The 
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Nonzero Fr 

Figure 5 also includes nonzero Fr results for comparison. 
On the waterplane, the surface and wake centerplane 
pressure displays very dramatic differences, the wall-shear 
velocity shows similar trends, but with reduced magnitude, 
and the wake centerplane velocity indicates a faster recovery 
in the intermediate and far wake. As will be shown later, the 
first closely follows the wave profile, the second is due to an 
increase in boundary-layer thickness near the waterplane 

differences are minimal on the forebody, whereas, they are 
significant on the afterbody and depart from the data. It 
appears that the present simple definition (1) is insufficient 
for “wavy” displacement bodies. 

The surface-pressure profiles (Fig. 9) show similar 

FIG. 5. Comparison of interactive and large-domain solutions, water- 
plane: (a) surface and wake centerplane pressure; (b) wall-shear velocity; 
(c) wake centerplane velocity. 

30 1.25 ,150 

X 
1175 0 

tendencies as just discussed with regard to the wave profile. 
On the forebody, the two solutions are nearly identical, but, 
in this case, in very close agreement with the data. The 
pressure on the forebody shown by the dashed line is that 
obtained from the inviscid displacement-body solution. On 
the afterbody, here again, the interactive solution indicates 
larger values than the inviscid solution, with the data in 
between the two. The wave-induced effects are seen to 
diminish with increasing depth and the agreement between 
the two solutions and the data on the afterbody shows 
improvement. The surface-pressure contours (Fig. 10) 
graphically display the differences between the two solu- 
tions and the data. Note that the axial and vertical surface- 

As indicated in Figs. 5 and 14 through 16, the agreement 
between the calculations and data is quite good; however, 
there are some important differences, which are primarily 
attributed to the deficiencies of the standard k - E turbu- 
lence model with wall functions. In particular, the axial 
velocity and turbulent kinetic energy are overpredicted near 
the stern and there is a more ranid recoverv in the wake. , pressure gradients can be discerned from these figures, i.e., 
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FIG. 6. Free-surface perspective view: (a) interactive; (b) inviscid. 

increasing and decreasing pressure imply, respectively, 
adverse and favorable gradients. The larger wave elevation 
and pressure on the afterbody for the interactive solution 
results in the closed contours near the stern displayed in 
Fig. lob. As already mentioned, the viscous-inviscid inter- 
action is weak for the Wigley hull, which is the reason that 
the inviscid and viscous pressure distributions are quite 
similar. However, it appears that the interaction is greater 
for nonzero as compared to zero Fr. 

Figures 11 through 13 show the detailed results for 
several representative stations, i.e., x = 0.506, 0.904, and 
1.112, although the discussion to follow is based on the 
complete results at all stations. Note that for zero Fr the 
upper boundary shown is the waterplane, whereas for non- 
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FIG. 7. Free-surface contours: (a) interactive; (b) inviscid. 

zero Fr, it is the predicted free surface. Also, the axial- 
velocity, -vorticity, and turbulent kinetic energy contours 
are not shown for the inviscid solution since, in the former 
case, their values are all very close to one and, in the latter 
two cases, they are, of course, zero. Solid curves indicate 
clockwise vorticity. 

On the forebody (Fig. 1 1 ), the boundary layer is thin such 
that many aspects of the solutions are similar; however, 
there are some important differences. The nonzero Fr 
pressure fields show local and global effects of the free 
surface; i.e., near the free surface, regions of high and low 
pressure coincide with wave crests and troughs, respec- 
tively, and at larger depths, the contours are parallel to the 
free surface. Also, for nonzero Fr, the crossplane-velocity 
vectors are considerably larger, especially for the interactive 
solution. The inviscid solution clearly lacks detail near the 
hull surface. The extent of the axial vorticity is increased for 
nonzero Fr and is locally influenced by the free surface. In 
both cases, as expected, the direction of rotation is mostly 
anticlockwise. 

On the afterbody (Fig. 12), almost all aspects of the 
solutions show significant differences. The boundary layer 
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FIG. 8. Wave profile. 
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FIG. 9. Surface-pressure profiles: (a) z/d= 0.04; (b) z/d= 0.92. 

is thicker near the waterplane for nonzero as compared to 
zero Fr. This behavior begins at x x 0.825, which coincides 
with a region of adverse axial wave-induced pressure 
gradient (see Fig. 7). The differences for the pressure field 
and axial-vorticity contours are similar as described for the 
forebody; however, in the case of the crossplane-velocity 
vectors, there is an additional difference that, near the free 
surface, the interactive solution displays downward flow. 
This is consistent with the fact that the free-surface elevation 
is above the waterplane and the pressure is generally higher 
near the free surface than it is in larger depths, i.e., q > 0 
and afijaz < 0. Note that, as expected, in both cases, the 
direction of rotation for the axial-vorticity is mostly clock- 
wise. The turbulent kinetic energy contours are nearly the 
same for both Fr. 

In the wake (Fig. 13), the solutions continue to show 
significant differences. Initially, the low-velocity region dif- 
fuses somewhat and covers a larger depthwise region; then, 
for x > 1.2, it recovers quite rapidly. A similar behavior was 
noted earlier for the wake centerline velocity for x > 1.2, 
both of which, as already mentioned, are consistent with the 
wave pattern. The zero Fr pressure field is nearly axisym- 
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FIG. 10. Surface-pressure contours: (a) experiment; (b) interactive; 
(c) inviscid. 

metric and fully recovered by the exit plane. The nonzero Fr 
pressure field continues to show free-surface effects, i.e., the 
contours are parallel to the free surface, but also fully 
recovered by the exit plane. Note the considerably larger 
wave elevation near the wake centerplane for the inviscid as 
compared to the interactive solution, which was pointed 
out earlier with regard to Figs. 6 and 7. Here again, the 
crossplane-velocity vectors are larger for nonzero as com- 
pared to zero Fr, especially near the wake centerplane for 
the interactive solution. The interactive and inviscid solu- 
tions display differences near the free surface, which appear 
to be consistent with the differences in their predicted wave 
patterns. The zero Fr axial vorticity decays fairly rapidly, 
whereas, for nonzero Fr, the decay is slow with a layer of 
nonzero vorticity persisting near the free surface all the way 
to the exit plane. The turbulent kinetic energy contours are 
similar for both Fr, but recover faster for the nonzero case. 

Figures 14 through 16 show the velocity, pressure, and 

581/98/l-4 
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FIG. 11. Comparison of solutions at x = 0.506: (a) axial-velocity contours; (b) pressure contours; (c) crossplane-velocity vectors; (d) axial-vorticity 
contours; and (e) turbulent kinetic energy contours; columns, interactive, Fr = 0 and 0.316 and inviscid, Fr = 0.316, respectively. 
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FIG. 13. Comparison of solutions at x = 1.112: (a) axial-velocity contours; (b) pressure contours; (c) crossplane-velocity vectors; (d) axial-vorticity 
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FIG. 14. Velocity, pressure, and turbulent kinetic energy profiles at x = 0.5. 

turbulent kinetic energy profiles for similar stations as for 
Fig. 11 through 13, i.e., x = 0.5, 0.9, and 1.1. Also, included 
are both zero and nonzero Fr experimental data. At the 
largest two depths, z = 0.05 and 0.0625, data for both Fr are 
available, whereas, at the waterplane, z =O, only zero Fr 
data are available. At the intermediate depths, data are 
available for both Fr, but for different z values. Since the 
interest here is primarily nonzero Fr and the zero Fr data 

and comparisons were already displayed in [ 143, only non- 
zero Fr data are shown for z=O.O125, 0.025, and 0.0375. 
For zero Fr, a corrected pressure is also shown which 
includes a constant ( = - 0.03) reference-pressure correction 
as described in [ 141. Turbulent kinetic energy data are only 
available for zero Fr. 

At x = 0.5, consistent with previous discussions, the 
differences between the two solutions are quite small 
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FIG. 15. Velocity, pressure, and turbulent kinetic energy profiles at x = 0.9. 

and the agreemnt with the zero Fr data is good. However, 
the nonzero Fr data show some unexpected differences. 
In particular, the axial-velocity profile has a laminar 
appearance and the boundary-layer thickness is relatively 
large; the vertical velocity is upward, and the pressure 
shows considerable scatter. It is pointed out in [S] that 
the pressure-measurement error was appreciable. 

At x=0.9 and 1.1, here again, consistent with previous 

discussions, the differences between the two solutions are 
significant and the agreement between the zero Fr solution 
and data is good, except for the aforementioned discrepan- 
cies. The nonzero Fr solution shows larger axial velocities 
than the measurements for the inner part of the profiles. 
Here again, the measured profiles have a laminar appear- 
ance and the boundary layer is thick. However, no doubt a 
part of the difference is due to the calculations; i.e., as is the 
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FIG. 16. Velocity, pressure, and turbulent kinetic energy profiles at x = 1.1. 

case for zero Fr, due to deficiencies of the k - E turbulence and near the free surface the data display greater upward 
model, an overprediction of the velocity near the wall and flow than the calculations. In the wake, the nonzero Fr 
wake centerplane is expected. The transverse velocity is data show surprisingly small vertical velocities near the 
small and with similar trends for both calculations and wake centerplane. Here again, the nonzero Fr pressure 
measurements. The calculations indicate downward vertical data shows considerable scatter and is difficult to compare 
velocities near the free surface and upward values for the with the calculations. Consistent with earlier discussions the 
midgirth region and near the keel. The agreement with the turbulent kinetic energy profiles are nearly the same for 
data near the keel is satisfactory, but in the midgirth region both Fr. 
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TABLE I 

Residuary-Resistance Coefficients 

L(m) T(“C) u. (m/s) Fr Re CR 

Experiment IHI 6 12.8 2.423 0.316 11.9x lo6 1.803 x lO-3 
Experiment SRI 4 10.6 1.978 0.316 6.14 1.998 
Experiment UT 2.5 17.3 1.564 0.316 3.6 1.866 
Inviscid 0.316 1 .I9 
Interactive 0.316 4.5 x IO6 1.92 

Lastly, Table I provides a comparison of the calculated 
pressure-resistance coefficient and experimental values of 
the residuary-resistance (i.e., total frictional) coefficient. 
The experimental values cover a range of Re, including 
the present value, and clearly show a dependency on Re. 
Interestingly, the inviscid result compares well with the data 
at the highest Re, whereas the interactive result is close to 
that which the data implies at the present Re. 

WAVE-BOUNDARY LAYER AND WAKE INTERACTION 

The comparisons of the zero and nonzero Fr interactive 
and inviscid-flow results with experimental data enables an 
evaluation of the wave-boundary layer and wake inter- 
action. Very significant differences are observed between the 
zero and nonzero Fr interactive results due to the presence 
of the free surface and gravity waves. In fact, the flow field 
is completely altered. Most of the differences were explicable 
in terms of the differences between the zero and nonzero Fr 
surface-pressure distributions and, in the latter case, the 
additional pressure gradients at the free surface associated 
with the wave pattern. The viscous-inviscid interaction 
appears to be greater for nonzero as compared to zero Fr. 
It should be mentioned that other factors undoubtedly have 
important influences, e.g., wave-induced separation, which 
are not included in the present theory. 

The interactive and inviscid nonzero Fr solutions also 
indicate very significant differences. The inviscid solution 
clearly lacks “real-fluid effects.” The viscous flow close to the 
hull and wake centerplane is clearly not accurately resolved. 
The interactive solution shows an increased response to 
pressure gradients as compared to the inviscid solution, 
especially in regions of low velocity. Also, the inviscid 
solution overpredicts the pressure recovery as the stern and 
the stern-wave amplitudes. 

CONCLUDING REMARKS 

The present work demonstrates for the first time the 
feasibility of an interactive approach for calculating ship 
boundary layers and wakes for nonzero Fr. The results 
presented for the Wigley hull are very encouraging. In fact, 

in many respects, the present results appear to be superior 
to the only other solutions of this type available, i.e., 
[ 10, 111. This is true both with regard to the resolution 
of the boundary-layer and wake regions and the wave 
field. Furthermore, it appears that the present interactive 
approach is considerably more computationally efficient 
than the large-domain approaches of [ 10, 111. This is 
consistent with the previous finding for zero Fr [15]. 
However, a complete evaluation of the present method 
was not possible. In the former case, due to the limited 
available experimental data. As mentioned earlier, a related 
experimental study for the Series 60 C,=O.6 ship model 
[28] was recently completed for which extensive measu- 
rements were made at both low and high Fr for which 
calculations and comparisons are in progress. In the 
latter case, due to the considerable differences in numerical 
techniques and algorithms and turbulence models between 
the present methods and those of [lo, 111. As mentioned 
earlier, the pursuit of a large-domain approach to the 
present problem is also of interest and will enable such an 
evaluation. 

Finally, some of the issues that need to be addressed while 
further developing and validating the present approach are 
as follows: further assessment of the most appropriate 
free-surface boundary conditions; improved definition and 
construction of displacement bodies; the inclusion and 
resolution of the bow-flow region; extensions for lifting 
flow; and the ever present problem of grid generation and 
turbulence modeling. Also, of interest is the inclusion of 
nonlinear effects in the inviscid-flow code. 

APPENDIX: NOMENCLATURE 

A,, B,, etc. 
A,,,, 4, a,, b,k 
bf 
CD, c,, C”, C”b 
c, 
CP 
CR 
Fr 
g” 

k 

Coefficients in transport equations 
Influence coefficients 
Geometric tensor 
Finite-analytic coellicients (nb = NE, NW, SE, etc.) 
Friction coefficient (= Zr,/p(iz) 
Pressure coefficient 
Residuary-resistance coefficient ( = ZR/pSUi) 
Froude number (= U,/&) 
Conjugate metric tensor in general curvilinear coor- 
dinates 5’ 
Turbulent kinetic energy 
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L 
n 

b 
R 
Re 
s 
Sh, s,, etc. 
s,, s 

t 
u, K w 
u,, v,, w: 
u< 
u,, 
UT 
tlfl, W, etc. 
4 Y, z 
x, r, 0 
XI, y-, :+ 
6* 

9 

P 
Y 

Characteristic (ship) length 
Normal unit vector 
Piezometric pressure 
Residuary resistance 
Reynolds number ( = U,, L/v) 
Wetted surface area 
Boundaries of the solution domain 
Source functions 
Time; arclength in tangential direction 
Tangent unit vector 
Velocity components in cylindrical polar coordinates 
Velocity components in Cartesian coordinates 
Wake centerline velocity 
Characteristic (freestream) velocity 
Wall-shear velocity ( = m) 
Reynolds stresses 
Cartesian coordinates 
Cylindrical polar coordinates 
Dimensionless distances ( = (i?x/v, etc.) 
Displacement thickness 
Rate of turbulent energy dissipation 
Free-surface elevation 
Dipole strength 
Kinematic viscosity 
Eddy viscosity 
Body-fitted coordinates 
Density 
Source strength 
Time increment 
Fluid- and external-stress tensors 
Wall-shear stress 
Transport quantities (Il, V, W, k, E); velocity poten- 
tial 

Subscripts 

edge value 
freestream or zero Fr value 
inviscid-flow value 
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